Auto-Scaling Cloud Applications Using Machine Learning

XLR8

Goal: Meet Application SLO

- **Allow** a cloud application to meet its service level objective (SLO) by automatically scaling its resource allocations
- **Reduce** SLO violations by meeting increased demands
- Save IT costs by removing excess VMs from an elastic tier or by right-sizing over-provisioned VMs

Horizontal Scaling

Approach:

- Uses machine learning to auto-learn application behavior
- Uses heuristics to seed the learning process
- Handles multiple resources and tiers

Evaluation:

- 3-tier Dukes Bank application with dynamic workload
- Learns quickly and adapts to demand changes automatically

vCHS Auto Scale

* Check out our demo at the VMware OCTO booth!

Traditional Approach

- User-defined threshold on a specific metric
- Scale out/up when threshold is violated
- Problems
 - How to determine threshold values?
 - How to handle multiple tiers?
 - How to handle multiple resources?

Vertical Scaling (Right-Sizing)

Approach:

- Uses learning to correlate performance with resource usage
- Automated online adaptation of resource configuration
- Reduces need for offline capacity planning and load testing

Evaluation:

- TPCC benchmark on MS SQL Server with varying user demand
- Automatically adjusts no. vCPUs and memory size via HotAdd

Status

Technical papers published

- Scaling of cloud applications using machine learning, VMTJ 2014.
- Application-Driven dynamic vertical scaling of virtual machines in resource pools, NOMS 2014.
- Runtime vertical scaling of virtualized applications via online model estimation, SASO 2014.

Ongoing Alpha program

Email autoscale@vmware.com if you're interested in participating

